
BugOss: A Benchmark of Real-world Regression Bugs for Empirical Investigation of
Regression Fuzzing Techniques

Jeewoong Kima, Shin Honga,∗

aChungbuk National University (CBNU), Cheongju, Chungbuk, 28644 Republic of Korea

Abstract

This paper presents the design and the constitution of BugOss, a real-world regression bug benchmark for empirical study of
regression fuzzing techniques. To reproduce the actual project context where a regression bug was introduced, each bug case of
BugOss pinpoints the exact bug-inducing commit and provides a specific test oracle considering the presence of other co-existing
bugs. BugOss currently comprises 20 real-world bug cases from 20 open-source C/C++ projects, which had been reported by the
OSS-Fuzz projects and confirmed by the project maintainers. The empirical investigation with two regression fuzzing techniques
show that, with the bug cases in BugOss, the regression fuzzing techniques perform differently depending on the given project
context. In addition, the experiments imply that BugOss encompasses various cases of regression bugs in real-world, thus the bug
cases would be useful for empirically investigating regression fuzzing techniques.

1. Introduction

Continuous fuzzing is a testing practice to periodically run
fuzzers to generate new test inputs to guard the project against
regression bugs along a series of program changes [1]. OSS-
Fuzz [2] has demonstrated the effectiveness of continuous
fuzzing by detecting more than 49340 bugs from 859 and more
open-source projects in first 5 years of its service. Continu-
ous fuzzing is becoming increasingly popular as more projects
are hosting fully automated continuous integration pipelines on
cloud, and greybox fuzzers are advancing to better support this
trend [3, 4, 5].

Regression fuzzing techniques utilize the information on pro-
gram changes to quickly discover recently introduced failures.
Zhu and Böhme [3] proposes a change-aware power scheduling
scheme to put more fuzzing effort to a code region if it is more
recently changed or more frequently updated. Yoo et al. [4]
presents a technique to reuse the seed corpus of a previous ver-
sion to fuzzing subsequent versions based on program change
information. By selectively exploring changed behaviors, re-
gression fuzzing techniques aim to quickly discover regression
bugs, and reduce computation effort to re-test the unchanged
behaviors.

Regression fuzzing is a promising direction for enhancing
continuous fuzzing performance, and more investigations are
expected to follow to improve regression fuzzing techniques.
However, the existing fuzzing benchmarks [3, 6, 7, 8, 9] are not
suitable for evaluating regression fuzzing techniques because
their bug cases are artificially constructed based on bug-fix in-
formation (i.e., patches) while not reproducing actual commits
that introduce bugs to the target projects.

∗Corresponding Author
Email addresses: jeewoong@chungbuk.ac.kr (Jeewoong Kim),

hongshin@chungbuk.ac.kr (Shin Hong)

This paper presents BugOss, a collection of real-world re-
gression bugs with the package of information for experiment-
ing regression fuzzing techniques. To help researchers repro-
duce realistic project context where continuous fuzzing per-
forms against a bug-inducing commit, each artifact of BugOss
indicates the exact commit where a regression bug was intro-
duced in the version history, and provide a ground-truth condi-
tion to check whether a failure is induced by the regression bug,
or other co-existing faults. We systematically extracted these
pieces of information from the OSS-Fuzz issue tracker and the
target project repositories to avoid uncertainty (Section 3).

Currently, 20 bug cases from 20 C/C++ programs are regis-
tered for the BugOss benchmark. To understand their charac-
teristics, we conducted experiments with two general-purpose
fuzzers and four regression fuzzing techniques (Section 5).
From the experiment results, we found that BugOss encom-
passes various cases of real-world regression bugs which indi-
cate the remaining challenges of regression fuzzing techniques.
We believe that BugOss offers researchers a useful basis of em-
pirical investigation of regression fuzzing techniques, as it is
publicly available at the following site:

https://github.com/sdevlab/BugOss

The main contribution of this paper are as follows:

• To the best of the authors’ knowledge, BugOss is the first
benchmark with actual bug-inducing commits of real-world
C/C++ projects under continuous fuzzing for empirical
study of regression fuzzing techniques. All artifacts of the
benchmark and the experiment results are publicly open for
future research.

• We present a systematic procedure to construct regression
bug benchmarks based on code repository and issue tracker
information. We propose a new method to collect failure

Preprint submitted to Elsevier October 26, 2024

https://github.com/sdevlab/BugOss


cases and derive a bug-specific test oracles.

• We provide the experiment results with two general-purpose
and four regression fuzzing techniques that explore the char-
acteristics of the bug cases in BugOss. The experiment re-
sults also imply that BugOss is useful to evaluate regression
fuzzing techniques and identify their limitations.

The remaining sections of this paper are as follows. Section 2
explains the background and the related work. Section 3 de-
scribes the structure of the bug cases in the BugOss benchmark
and the detailed procedure of the bug case artifact construction.
Section 4 presents the current constitution of the BugOss bench-
marks and provides the detailed information about the 20 bug
cases. Section 5 describes the empirical studies of BugOsswith
six fuzzing techniques. Section 6 discusses our observations on
BugOss, and Section 7 concludes this paper.

2. Background and Related Work

2.1. Continuous Fuzzing and Regrssion Fuzzing Techniques

Continuous fuzzing is an automated verification practice that
periodically (e.g., more than once every 24 hours [2]) conducts
fuzzing throughout the project’s evolution to swiftly detect and
eliminate adverse program changes. Unlike continuous integra-
tion, which synchronously runs static bug checkers against each
commit, continuous fuzzing operates asynchronously with con-
tinuous integration. This is because greybox fuzzers require a
sufficiently long running time (e.g., 24 hours [10]) to explore
different target program paths by generating numerous inputs
stochastically.

One limitation of continuous fuzzing is that a significant por-
tion of fuzzing efforts is expended on repeatedly testing un-
changed program paths over the project’s history [11]. Even
though only a small portion of the production code changes
during a fuzzing duration, the current practice of continuous
fuzzing utilizes conventional fuzzers that aim to explore var-
ious program paths regardless of how the target program has
changed.

Regression fuzzing techniques have been proposed to con-
sider the project context in fuzzing to alleviate this inefficiency
in continuous fuzzing practice. AFLChurn [3] is a directed
greybox fuzzer that refers to code change history to identify
which regions of the target program have been recently intro-
duced and more frequently updated. It then guides a fuzzing
run toward the identified critical regions of the program. The
key idea of AFLChurn is a power scheduling algorithm that as-
signs more power to a seed if the program path toured by the
seed contains recently changed regions or frequently updated
regions.

Another approach proposed by Yoo et al. [4] is change-aware
seed reuse for continuous fuzzing. This approach suggests
reusing the seed corpus generated in an earlier version to direct
fuzzing of the next version toward changed code regions. When
a new version is subjected to continuous fuzzing, the suggested
technique first identifies the regions of the target program that

changed after the previous fuzzing run. It then collects the pre-
viously generated test inputs that explore the corresponding re-
gions in the previous fuzzing run and initiates a new fuzzing
run with the collected test input as the initial seed corpus. This
approach is based on the assumptions that if a test input reaches
a region in the previous version of the target program, the test
input will likely reach the same region after the code changes.
Additionally, a fuzzing run will likely explore changed program
behaviors if test inputs reaching the changed code regions are
used as initial seeds.

2.2. OSS-Fuzz Service

OSS-Fuzz [2] is a service operated by Google offering
continuous fuzzing to well-known open-source projects to
promptly detect security vulnerabilities and bugs as they are in-
duced. Each of the hosted open-source projects registers one
or multiple fuzzing drivers (i.e., fuzzing targets and fuzzing
configurations) that OSS-Fuzz runs fuzzers (e.g., libfuzzer and
AFL) with them on a regular basis. Using the registered fuzzing
drivers, the recent version of the target projects at GitHub un-
dergo automated testing using the initial seed corpus main-
tained by OSS-Fuzz.

Once a failure is detected, OSS-Fuzz generates a bug report
and privately shares it to the corresponding maintainers. Only
after few months, OSS-Fuzz made a bug report public at a sep-
arate issue tracker 1, since it may expose the latest weakness or
the bug information to potential attackers. Upon receiving a bug
report from OSS-Fuzz, a target project maintainer may change
the program to resolve the concerned issues. Since OSS-Fuzz
does not post a bug report to the target project’s issue tracker
or sends a pull request, the traceability link between the bug
report and the corresponding program change is unclear [12]
unless the maintainer explicitly references the OSS issue num-
ber or mentions the specific failure identified by OSS-Fuzz in
the commit message, self-registered issue, or pull request.

An issue report automatically generated by OSS-Fuzz pro-
vides details about the observed failures in a specific format. An
issue report outlines the failure symptom including crash type,
crash state and the involved sanitizer if exists. Additionally, an
issue report includes a failure-inducing test input, enabling the
developers to reproduce the failure by running the attached test
input on the respective fuzzing driver.

Note that, as a fuzzing driver is integrated with the target
project, we can check the test results with the same input on a
series of program versions, thus we can pinpoint the exact bug-
inducing commit if the bug was introduced after the fuzzing
driver had been added to the project. To facilitate the identifica-
tion of the bug-inducing commit, OSS-Fuzz conducts bisection
and provides a suspected range of the bug-inducing commit.
Furthermore, for a reported issue, OSS-Fuzz routinely checks
if the failure is reproduced in a recent version. If the failure is
not reproduced, OSS-Fuzz adds a note to the issue report with
a commit number for which it witnesses the failure is not re-
produced, because the bug causing the failure would be fixed

1https://bugs.chromium.org/p/oss-fuzz/

2

https://bugs.chromium.org/p/oss-fuzz/


before the commit. We can pinpoint the exact bug-fix commit
by testing all preceding program versions rigorously.

2.3. Fuzzing Benchmark
The fuzzing research community has developed benchmarks

for sound empirical assessments of a variety of research at-
tempts scientifically and to guide research efforts toward im-
proving the techniques. For example, FuzzBench [17] provides
open-source fuzzer benchmarking service using massive com-
putation resources to periodically evaluate how the state-of-the-
art fuzzers perform with 24 target programs as they evolve.

A key challenge in benchmark construction is to achieve di-
versity of bug cases, encompassing various bug types and lo-
cations, while preserving authenticity of the bugs to ensure
they share characteristics with real bugs. The synthetic ap-
proach addresses this challenge by generating a large number of
buggy versions controlling the diversity of bug cases [7, 18, 19].
For example, LAVA [7] provides a benchmark by synthesizing
many buggy versions of eight open-source programs by inject-
ing different types of bugs over different code locations, where
security bugs are injected to evaluate fuzzing techniques with
diverse bug cases. Fuzzle [18] proposes to synthesize ground-
truth buggy programs modeling realistic path constraints to
evaluate fuzzing techniques.

While these synthetic approach effectively manages bug case
diversity, there remains uncertainty about whether synthetic
bugs accurately represent real bugs introduced in practical sce-
narios. An empirical study [9] utilizing two synthetic bench-
marks, LAVA-M [7] and Rode0day [20, 13], discovered that
fuzzers often exhibit different performance in failure detection
when dealing with synthetic bugs compared to real bugs col-
lected from actual bug-inducing commits.

When assessing regression fuzzing techniques, synthetic
benchmarks would encounter significant limitations as they do
not provide real project context such as version histories and
previous fuzzing results. Our observations indicate that the per-
formance of regression fuzzing techniques depends on the pro-
vided project contexts (see Sections 5.2.3 and 5.2.4). Conse-
quently, utilizing synthetic benchmarks introduces further va-
lidity threats in the evaluation of regression fuzzing techniques.

FuzzBench extends Google Fuzzer Test Suite (a.k.a.
FTS) [21] to incorporate 24 real-world open-source programs
for assessing the performance of various greybox and white-
box fuzzing tools [17]. UniFuzz [22] presents a benchmark of
20 real bugcases to evaluate various fuzzing techniques. These
benchmarks are free from the validity threats of employing ar-
tificial bugs, because only real-world bug-inducing commits
found in the real-world projects are used. One technical chal-
lenge of these real bug benchmarks is managing potential inter-
ference of identified or unidentified co-existing bugs [23, 24].

BugOss takes a similar approach by exclusively leveraging
bug-inducing commits found in the real-world. We present a
systematic process to construct bug-specific test oracles and
other failure’s test oracles to determine whether a failure found
by a fuzzer is caused by the target bug (i.e., the bug newly
induced by the bug-inducing commit under fuzzing). We ob-
served that these test oracles are effective in the experiments

(see Sections 5.2.2 and 6.2). In addition, considering the pos-
sible gap between OSS-Fuzz issues and project commit history,
we propose a systematic procedure for constructing benchmark
bug cases that maintain traceability.

Magma [6] constructs a benchmark using the forward-
porting approach. For each of the seven open-source projects,
they identified multiple security-relevant bugs, and then re-
inserted the identified bugs to a single version while adding
bug-specific assertions to identify whether a test input reaches
the bug location and the infection occurs. As the benchmark
employs real bugs and real-world projects, Magma attains both
diversity and authenticity of bug cases at the same time. And,
potential interference of multiple bugs can be managed by hav-
ing bug-specific assertions. However, in evaluating regression
fuzzing techniques, Magma shares a limitation with the syn-
thetic approaches that it lacks real project context information
since multiple bugs are injected at earlier versions.

Table 1 contrasts BugOss with the existing fuzzing bench-
marks at a glance. The columns labelled “# proj.“, “# ver.“ and
“# bugs“ present the number of projects, versions and bugs in-
cluded in each benchmark, while “LoC“ indicates the range of
the program sizes in terms of Lines of Code (LoC). The “bug
origin“ column specifies whether the target bugs are artifically
synthesized, migrated from bug-fixing commits (i.e., revsers-
ing actual bug-fixes), or collected from actual bug-inducing
changes as they are (“BIC“). The “bug-specific test oracle“
column indicates whether a benchmark provides information
or mechanims to determine whether a failure is caused by the
target bug. Similarly, the “co-existing bug info.“ column in-
dicates whether the information about the co-existing bugs or
their failures is provided, if they exist. Finally, the “seed cor-
pus“ column represents the source of the initial seed corpus: “
arbitrary“ means that the given initial corpus is constructed re-
gardless of the target project, “latest“ maens the given corpus is
obtained from the latest version of the project, and BIC means
the given corpus is one that used in the project when the BIC
occured.

Table 1 shows that, unlike the other benchmarks, BugOss
provides comprehensive information for reconstructing real
project context where a regression bug is newly introduced,
and a fuzzing run is conducted against it. Reconstructing
the bug-inducing context is important for empirically studying
how fuzzers perform in detecting regression errors (see Sec-
tions 5.2.3 and 5.2.4). Additionally, when a target version
is not latest one, but a previous one (i.e., right after the bug-
inducing change), the effects of co-existing bugs should be sys-
tematically managed in experimenets (see Section 5.2.2). For
these reasons, we believe that BugOss complements the exist-
ing fuzzing benchmarks with its specific design for facilitating
empirical study on regression fuzzing.

3. Benchmark Design and Construction

3.1. Artifact structure

Each artifact of a bug case in BugOss is purposed to study
how the fuzzer performs in generating a test input that reveals

3



Table 1: Comparisons of Fuzzing Benchmarks

name # proj. LoC # ver. # bugs bug origin bug-specific co-existing seed
test oracle bug info. corpus

LAVA-M [7] 4 2K–4K 4 2265 synthesized no no arbitrary
Rode0day [13] 11 1K–160K 11 978 synthesized no no arbitrary
FuzzBench [14] 24 3K–1422K 28 28 BIC no no BIC
UniFuzz [15] 20 4K–1126K 20 20 BIC no no arbitrary
Magma [16] 9 294K–1830K 9 138 migrated yes yes latest
AFLChurn [3] 15 16K–601K 15 15 migrated no no latest
BugOSS 20 18K–1680K 20 20 BIC yes yes BIC

a specific target bug (i.e., an input that triggers a target bug to
induces a failure) when the bug was actually introduced in a
real-world project. To capture real-world bug-inducing situa-
tions, we initially gathered OSS-Fuzz issues that led the project
maintainers to recognize and fix previously unidentified bugs
in their projects. For each gathered issue, we systematically re-
viewed the target project’s commit history and the related OSS-
Fuzz issues to identify the bug-inducing commit and also the
bug-fixing commit, and collected the information to determine
the symptom of the target bug (i.e., bug-specific test oracle).
Specifically, the artifact of a bug case in BugOss consists of the
following elements:

• bug-revealing input: an input for each fuzzing target,
that induces a failure. This input is given as the failure-
reproducing input in the OSS-Fuzz issue.

• bug-inducing commit: the program change that newly adds
the target bug to the target program. For simplicity, we call
the program versions before and after the bug-inducing com-
mit as the bug-free version and the first buggy version, re-
spectively.

• bug-fixing commit: the program change that repairs the tar-
get bug (i.e., fix-inducing commit). We call the immediately
following version of the bug-fixing commit as the fixed ver-
sion and the immediate preceding version as last buggy ver-
sion (or pre-fix version), respectively.

• bug locations: a subset of the changed lines in the bug-
inducing commit, that are suspected to result in a failure
when the bug-revealing input is given.

• fix locations: a subset of the changed lines in the bug-fixing
commits, that are related to resolving failures identified by
the bug-revealing input. Note that fix locations and bug lo-
cations are originated from independent sources, thus they
may or may not be overlapped.

• bug-specific test oracle: conditions to determine whether
a failure is induced by the target bug, or by the other bugs
based on failure symptom (e.g., crash message, stack trace,
execution time). These conditions are provided executable
forms (e.g., sanitizer setting, script), so that these can be used
in automated processes.

Note that, even without bug-specific test oracles, it is possible
to determine if the input reveals a target bug by executing the
bug-free version, the first buggy version, the last buggy version
and the fixed version with the same test input, and the bug-free
version with the same test input (i.e., an input reveals the target
bug if the first buggy version and the last buggy version fail with
the input while the bug-free version and the fixed version do not
fail). However, employing such a determination approach de-
mand to much testing effort to be integrated into a continuous
fuzzing process because multiple versions of the same project
must be used. BugOss offers bug-specific test oracles as condi-
tions over failure symptoms to efficiently determine whether a
fuzzer reveals a target bug.

3.2. Construction process

We constructed BugOss by tracking the information about
the target bugs from the failure information reported by the
OSS-Fuzz issues. Although a OSS-Fuzz issue gives clues about
when the target bug was induced and fixed (e.g., bijection and
disclosure), manual inspection is required to identify exact in-
formation about the target bug, and reject unsuitable cases 2. To
systematically construct benchmark artifacts, we had taken the
following six steps for each bug case:

1. Checking failure reproducibility. For a OSS-Fuzz issue,
we retrieved the latest version before the issue report time,
and identified the failure-reproducing input attached with the
issue as the bug-revealing input. Note that we used the is-
sues automatically generated by OSS-Fuzz only, thus these
issues provide full details including failure symptoms (e.g.,
crash type, crash stack trace) and failure-reproducing inputs.
Subsequently, we checked if a failure occurs as expected,
when fuzzers run the fuzzing driver (i.e., fuzzing target) with
the failure-reproducing input attached in the OSS-Fuzz is-
sue. We rejected the issues where failure reproduction was
not successful with one of the fuzzers (or both). Also, we
rejected the issues if the failure symptoms are different with
the issue reports.

2The manual inspection (for Steps 2 and 3) involved the participation of
five graduate students and one professor, including the authors. We verified the
evidence when a consensus was reached among all participants.

4



Figure 1: Bug Artifact Construction Process

2. Locating bug-fixing commit. We iterated over the versions
after the issue report time, until the bug-revealing input does
not induce the expected failure. Once we spotted the first
version where the failure does not occur, we looked for the
evidence that the commit is to resolve the issue. If we found
that the commit message written by the maintainer or the
related documentation mentions OSS-Fuzz or the particular
failure symptom explicitly, we confirm that the commit is the
bug-fixing commit intended by the developers. We rejected
the issues if we failed to find any clear evidence, or if the
fix is not yet made, because the last buggy version and the
fixed version may be used to examine an unidentified failure
symptom (see Section 3.3).

3. Locating bug-inducing commit. From the issue report time,
we checked the preceding versions in a backward manner
to pinpoint the version where the expected failure occurs
for the first time. As we are able to test multiple versions
against the failure-reproducing inputs, we could identify a
bug-inducing commit as the exact commit where the fail-
ure is first reproduced, instead of using the estimation meth-
ods based on the code change information [25], test cover-
age [26] or IR-based techniques [27]. For reproducing the
failures, we used the same fuzzing drivers which are used
in Step 1. In case where the fuzzing driver has changed
over versions, we transplanted the fuzzing driver to earlier
versions. Note that, as the same fuzzing driver is used for
all examined versions, we confirmed that the failure violates
the property that had been satisfied before the bug-inducing
commit (i.e., regression failure).

Once the first failing version is located, we proceeded to con-
firm that the corresponding commit is suspected to induce
the target bug. We manually checked that the suspected com-
mit and the bug-fixing commit (Step 2) concern the same
code lines, the same data structure, or they are associated in-
directly. If we could not confirm that they are related, we ex-
cluded the issues from the benchmark construction to avoid
possible uncertainty. We also rejected an issue if the located
commit changes only build scripts, configuration files, or
fuzzing drivers; we suspect such a change affects the reach-
ability of existing bugs, rather than inducing a new bug.

Once the bug-inducing commit is confirmed, we retrieved
the seed corpus at the bug-inducing time based on the OSS-
Fuzz configuration. In addition, we determined the bug lo-

cations and the fix locations by comparing the changed lines
of the bug-inducing commit and the bug-fixing commit.

4. Collecting failure cases. Since a program version is likely
to contain multiple bugs [28], each bug case of BugOss pro-
vides a bug-specific test oracle which discriminates the fail-
ures by the target bug (i.e., “target failures”) from the failures
by the other bugs (i.e., “other failures”).

To collect the references for defining a bug-specific test ora-
cle, we collected the two kinds of failure cases by the follow-
ing process. First, we ran the general-purpose fuzzers with
the bug-free version for 48 hours to collect the failures in-
duced by pre-existing bugs before the bug-inducing commit.
If a failure is observed with the bug-free version, we consid-
ered such failure cases as the failures by the other bugs.

Second, we gathered failure-reproducing inputs of the OSS-
Fuzz issues registered between the bug-inducing commit and
the bug-fixing commit, which fail the first buggy versions.
For each gathered failure-inducing input, we identified the
survival range in the version history that the input actually
causes the failure. If the range of a failure-reproducing in-
put is identical to that of the bug-revealing input, we consid-
ered that the failure-inducing input is redundant to the bug-
revealing input, and accepted its failure as one case of the
failure by the target bug. Otherwise, we regarded the cases
as the failures by other bugs (see more details at Section 3.3).

5. Defining bug-specific test oracles and other-failures test
oracles. Given two kinds of failure cases of a bug case ar-
tifact, we defined a bug-specific test oracle, a condition that
discriminates the failures by the target bug and the failures
by the other bugs. A bug-specific test oracle is defined over
the following failure symptoms: specific failure types, stack
trace patterns, coverage of specific branch condition, or their
combinations (see Section 3.3). Once a failure discriminat-
ing condition is identified, we encoded the condition as an
executable form (e.g., sanitizer setting or script for check-
ing error messages) such that the bug-specific test oracle can
be automatically checked in a fuzzing process. If we could
not find a condition of the failure symptoms that differenti-
ates target failures and other failures, we rejected the cases
to limit the threats by inaccurate test oracles.

In addition, we also define a test oracle for each of the other
failures, following the same procedure as for the bug-specific

5



test oracle (see Section 3.3). Note that bug-specific and
other-failure test oracles are inferred test oracles, thus they
may result in false positives or false negatives (see more dis-
cussion on this point at Section 6.2).

6. Rejecting useless cases. Lastly, we rejected the case if, for
the first buggy version, two conventional fuzzers, AFL++
and libfuzzer, always generate a bug-revealing input within
first 3 minutes of a fuzzing run. We believe that such bug
cases are not useful for empirically investigating the perfor-
mance of fuzzers. Also, we rejected the bug cases if the
bug-inducing commit changes more than 300 lines of code,
because such a large code modification may involve major
functionality changes and not suitable subject of regression
testing.

Currently, BugOss encompasses 20 bug cases acquired from
20 open-source C/C++ projects hosted by OSS-Fuzz. In order
to construct these artifacts, we had reviewed total 2074 OSS-
Fuzz issues from 65 open-source projects. We rejected 2054
issues in the middle of the construction process. In the first
step, 53 issues were rejected because we failed on our test-
ing environment to reproduce the described failures with bug-
reproducing test inputs offered by OSS-Fuzz. We conjecture
that the reproduction was not possible due to unspecified de-
pendencies.

In the second step, we excluded 1296 issues for which we
cannot locate bug-fixing commits with clear traceability links
to the corresponding bug-inducing commits (e.g., a mention in
the commit message). We excluded these issues because there
could be different reasons causing the failures to disappear (see
Section 6.3). During the third step, 622 issues were dropped out
because the failures are reproduced even at the earliest versions
that we can conduct fuzzing. Finally, in the sixth step, we dis-
carded 83 issues. Among the 83 issues, we determined 17 are
not useful because the corresponding failures occur promptly
after fuzzing starts. In addition, we concluded that 66 are not
useful because their bug-inducing commits involve significant
code changes which seem to require comprehensive fuzzing for
retesting all components, instead of regression fuzzing.

3.3. Test Oracle Construction

A bug-specific test oracle is a predicate over the failing exe-
cution that accurately determines whether the failure is caused
by the target bug or by the other bugs. A bug-specific test or-
acle is essential for regression fuzzing experiments to assess
whether a fuzzer effectively reveals a target regression bug in
the presence of other co-existing bugs.

To construct bug-specific test oracles of a bug case, we ex-
plored the possibilities of co-existing bugs by testing the bug-
free version and checking OSS-Fuzz issues. And, we system-
atically collected the failures by the target bugs and the failures
by the other co-existing bugs (Step 4 in Section 3.2). Figure 2
describes the failure case collection with examples. The x-axis
lists a series of the target program versions, v1 to v5 whereas the
y-axis lists a series of OSS-Fuzz issues with failure-reproducing

O
SS

-F
uz

z 
is

su
es

version history

𝑒!

𝑣" 𝑣# 𝑣$ 𝑣% 𝑣&
Feb 27 Mar 1 Mar 5 Apr 7 Apr 15

Mar 10

Apr 14

Mar 6

Mar 4

Mar 3

Mar 2

𝑒&

𝑒%

𝑒$

𝑒#

𝑒"

Figure 2: Examples of target failures and other failures

inputs, e1 to e6. Each date label declares the time when the cor-
responding version or issue is registered. A mark given to vi

and e j indicates whether the test with e j on vi is failing (marked
with red cross), or passing (marked with green check).

Suppose that we are constructing a bug case artifact with
bug-revealing input e5 whose survival range is between v2
and v4. Given bug-revealing input, we examined the failure-
reproducing inputs reported in Mar 1st to Apr 15th, which are
e2 to e6. We consider that e3, e4, and e6 are resulted by the
other bugs because they are not introduced at v2 (e4), or not re-
solved at v5 (e3, e4, e6). Meanwhile, e2 is considered as another
bug-revealing input, thus the failure with e2 is classified as the
failure by the target bug. Last, e1 shows a failure-reproducing
input related to a pre-existing bug. These failure cases can be
collected by fuzzing the bug-free version.

For a given target failure and other failure cases, we system-
atically derived a bug-specific test oracle based on the following
criteria:

• if we are given only target failures (i.e., no other failures), we
defined the bug-specific test oracle as the same as the general
test oracle which accepts all crashes and timeout identified
by a fuzzer as failures by the target bug.

• if the target failures have different failure types (e.g., heap-
buffer overflow and null-pointer dereference) with all other
failures, we define the bug-specific test oracle to accept a
failure if and only if it has the same failure type with a target
failure.

• if target failures and other failures have the same failure type,
we first determine the first frame in their stack traces (from
the top frame) where the target failures have different func-
tions with the other failures. And then, we used the stack
trace condition in the bug-specific test oracle.

• if a target failure and one other failure have the same failure
type and stack trace, we checked if there exists any branch
condition in the bug locations and the fix locations that are
satisfied only with the target failures. If such branch condi-

6



tion exists, we used the coverage of the branch condition in
a bug-specific test oracle.

To reduce false negatives, we defined the bug-specific test
oracle as general (i.e., weak) as it discriminates the given target
failures from the given other failures.

A fuzzer may discover a failure caused by a previously un-
known bug in the target projects. To identify such unknown
cases, BugOss also provides a test oracle for each of the other
failures. Constructions of these other bug test oracles follow the
criteria as the bug-specific test oracle, while only one failure is
used for constructing one test oracle. When a fuzzer detects a
failure, the bug-specific test oracle is examined. If the test or-
acle shows negativity, each test oracle of the other failures are
examined. If none of these oracle gives a positive result, the
failure is identified as unknown.

For example, for a target bug b, if we found failures f1 and f2
caused by other co-existing bugs, BugOss offers test oracles cb,
c f1 and c f2 . If a failure does not satisfy cb, the user can check if
it satisfies either c f1 or c f2 ; If none of the test oracle is satisfied,
this fact signals the user that the failure is different from all
previously known cases. Then, the user may run the failure-
inducing input on the different versions related to the target bug
(i.e., bug-free version, first buggy version, last buggy version,
and fixed version) to conclude whether the failure is a symptom
of the target bug.

A unknown failure may result from an unidentified bug or
an unreported symptom of an existing bug. Despite the limita-
tion as test oracles, as BugOss provides the bug-inducing com-
mit (i.e., bug-free version and first buggy version) and the bug-
fixing commit (i.e., the last buggy version and the fixed ver-
sion), it is possible to determine whether or not the unknown
failure is caused by the target bug; we observed such cases in
the experiments (see Section 6.2).

4. BugOss Benchmark

We have registered 20 bug cases for BugOss, as shown in Ta-
ble 2. These artifacts are built based on 20 real bugs that OSS-
Fuzz had detected from 20 well-known open-source C/C++
projects. In Table 2, the first column names each bug case by
combining the project name and the OSS-Fuzz issue number.
The second column shortly describes the functionalities of the
projects, and the third column gives the total sizes of the project
source code. The fourth column describes the failure types of
the target bugs. The fifth column shows the number of seed
inputs at the bug-inducing commits.

The columns with ‘changed line’ shows the number of
changed lines in the bug-inducing commit (‘BIC’) and the bug-
fixing commit (‘BFC’). The ’BIC→BFC’ represents the num-
ber of commits between the bug-inducing commit and the bug-
fixing commit. The columns with ‘failure cases’ give the num-
ber of the failures by the target bug (i.e., target failures), and
the number of the failures by the other bugs (i.e., other failures)
used for defining the bug-specific test oracles.

Last column marked as ‘test oracle type’ describes which
failure symptoms are used for defining the bug-specific test or-

acles. For the bug cases with ‘all’, the test oracle is the same as
the general test oracle. ‘failure type’ means that the bug-specific
test oracles uses the failure type information in the error mes-
sage to determine whether a failure is caused by the target bug
or the other co-existing bugs. ‘stack-N’ represents that the bug-
specific test oracle uses the top-N frames of the stack trace.
The bug cases with ‘stack-N & branch’ (i.e., pcap++-23592
and readstat-13262) have the test oracles that check the satis-
faction of the specific branch conditions in addition the top-N
stack trace information.

Table 2 shows that the bug cases in BugOss has a diversity of
projects and bug characteristics. The benchmark encompasses
a variety kinds of projects. The scale of the project spans from
18KLoC to 1680KLoC. The number of lines changed by bug-
inducing commit is small (less than 10) for five, moderate (10
to 50) for other eight, and large (more than 50) for the other
seven bug cases. The numbers in the ‘BIC→BFC’ column es-
timate the time-to-fix aspects [29]. Among the 20 bug cases,
11 have less than short time-to-fix durations (less than 10 com-
mits), while the other nine have moderate to long time-to-fix
durations. The numbers of the failure cases imply that nine bug
cases are of the single-bug case, while each of the other 11 bug
cases involve multiple bugs in its first buggy version.

One notable point in Table 2 is that, in most artifacts, the
bug-inducing commits change more lines of code than the cor-
responding bug-fixing commits. This result implies that bug-
fixing commits indicates the bug locations more specifically
than real bug-inducing commits. Another difference between
bug-inducing commits and bug-fixing commits is the seed cor-
pus. We found that, for eight bug cases, the seed corpora of BIC
and BFC are different. For example of aspell-18462, the seed
corpus at BIC consists of two inputs, while the seed corpus at
BFC has 60 inputs. By indicating actual bug-inducing commits,
BugOss effectively limits possible threats and provides realistic
experiment setup for evaluating regression techniques that uti-
lize code change information.

5. Empirical Investigation

5.1. Experiment Design

5.1.1. Research questions
We conducted experiments with different fuzzing techniques

to understand the characteristics of the existing BugOss bug
cases, and to explore how the choice of code change informa-
tion and test oracles influences fuzzing performances. We di-
vised the following four research questions:

• RQ 1. How effectively and efficiently does a fuzzer generate
a test input that reveals a target bug?

• RQ 2. To what extent the failure detection performance of a
fuzzer changes if a bug-specific test oracle is not used?

• RQ 3. To what extent the failure detection performance
changes if a regression fuzzer is given with the code change
information of the bug-fixing commit, instead of the bug-
inducing commit?

7



Table 2: Bug Cases in the BugOss Benchmark

name project description project failure type seeds changed lines BIC→ failure cases test oracle typesize (LoC) BIC BFC BFC target others
arrow-40653 columnar data analyzer 889K abort 10 22 86 230 2 4 failure type
aspell-18462 text spell checker 54K buf-overrun 2 5 18 87 1 1 stack-1
curl-8000 network data transfer tool 184K buf-overrun 4202 51 2 1 49 0 all
exiv2-50315 image metadata editing tool 386K int-overflow 454 45 3 18 1 13 failure type
file-30222 file type checker 18K null-deref 34 21 11 0 1 7 failure type
gdal-47716 geospatial data translator 1680K buf-overrun 1615 10 4 8 1 0 all
grok-28418 image compression tool 179K mem-leak 178 101 55 3 1 23 stack-2
harfbuzz-55779 text-to-font rendering library 135K assert violat. 1003 105 10 13 1 0 all
leptonica-25212 image processing library 201K null-deref 10 25 26 5 1 1 stack-1
libarchive-44843 multi-format archive library 168K null-deref 13 46 13 7 1 6 failure type
libhtp-17198 HTTP protocol parser 40K buf-overrun 97 26 29 3 3 0 all
ndpi-49057 deep packet inspector 93K int-overflow 351 51 10 5 1 16 failure type
openh264-26220 H.264 codec library 140K buf-overrun 174 7 5 19 10 0 all
openssl-17715 SSL/TLS cryptographic tool 592K buf-overrun 2240 91 47 267 2 0 all
pcap++-23592 packet processing library 59K buf-overrun 615 32 13 130 1 11 stack-8 & branch
poppler-35789 PDF file rendering library 198K null-deref 476 3 20 4 5 0 all
readstat-13262 Statistics data converter 31K buf-overrun 94 5 10 44 1 5 stack-5 & branch
usrsctp-18080 SCTP protocol library 85K use-aft-free 156 6 8 9 1 2 stack-1
yara-38952 malware detector 63K buf-overrun 9 277 17 0 1 0 all
zstd-21970 data compression tool 104K null-deref 12462 280 247 53 1 0 all

• RQ 4. To what extent the failure detection performance
changes if a regression fuzzer runs on the last buggy version,
instead of the first buggy version?

RQ 1 is to check if BugOss encompasses various bug cases to
compare regression fuzzing techniques. RQ 2 is assessing the
effect of using bug-specific test oracles in BugOss. RQ 3 and
RQ 4 are devised to study how the experiment results change if
bug cases are not obtained from actual bug-inducing commits.

To answer RQ 1, we ran the following five fuzzing configura-
tions based on three fuzzers and two fuzzing techniques against
the 20 bug cases to find whether the target bug is detected within
36 core-hours (= 6 hours×6 cores) and how much time is taken
for generating the first bug-revealing test input:

• libfuzzer[1] of llvm-14.0.0 as a general-purpose fuzzer
• AFL++ version 4.05c [30] as a general-purpose fuzzer
• AFLChurn [3] of commit 194e18c. AFLChurn has change-

aware power scheduling for regression fuzzing. We carefully
instructed AFLChurn to target all changed lines of the bug-
inducing commits while not targeting the changed lines of
the other commits.
• CSR-libfuzzer as an in-house implementation of the change-

aware seed reuse technique [4] upon llvm-14.0.0. We con-
figured libfuzzer to run fuzzing with the bug-free version for
36 core-hours and then re-use all generated inputs that cover
a changed function for fuzzing the first buggy version.
• CSR-AFL++ as an in-house implementation of the change-

aware seed reuse technique [4] upon AFL++ version
4.05c [30]. As similar for CSR-libfuzzer, we used AFL++ to
run fuzzing with the bug-free version for 36 core-hours and
then re-use all generated inputs that cover a changed function
for fuzzing the first buggy version.

We run AFL++, AFLChurn and CSR-AFL++ with the dis-
tributed mode using one core for master (-M) and five for work-

ers (-S) and sharing the seed corpus through a fuzzing cam-
paign. We run libfuzzer and CSR-libfuzzer with the fork mode
using six cores.

To answer RQ 2, we compared the failure detection results of
the studied fuzzers with the bug-specific test oracles and with-
out the bug-specific test oracles. The fuzzzing results of RQ 1
represent the fuzzing performance with the bug-specific test or-
acle. To obtain the results without using the bug-specific test or-
acles, we determined that a fuzzer generates the bug-revealing
input of a taret bug only if a failure occurs regardless of its fail-
ure type or another condition (i.e., general test oracle).

To answer RQ 3, we ran fuzzing of the studied regression
fuzzing techniques (i.e., AFLChurn, CSR-libfuzzer and CSR-
AFL++) with the changed functions determined with the bug-
fixing commits (not with the bug-inducing commits as RQ 1).
For re-using seeds, CSR-libfuzzer and CSR-AFL++ are given
with the inputs generated by libfuzzer and AFL++, respec-
tively, for the bug-free version, as the same with RQ 1.

To answer RQ 4, we ran fuzzing of the studied regression
fuzzing techniques on the last buggy version instead of the
first buggy version (the immediately preceding version of the
bug-fixing commits) with the code change information with the
bug-fixing commits. Similar to RQ 3, CSR-libfuzzer and CSR-
AFL++ use the seeds generated by libfuzzer and AFL++, re-
spectively, for the bug-free version.

5.1.2. Experiment Setup and Measurements
A fuzzing run is configured to use six cores for six hours (i.e.,

36 core-hours). Each fuzzer is set to fulfill this running time
despite of failure detections. All experiments were performed
with Intel i5-10600 3.30 GHz and 16 GB RAM running Ubuntu
20.04.3 LTS. For each setup, we repeated fuzzing runs for 10
times and then measured the average results.

For each fuzzing run, we measured the fault detection and
the first time to fault detection. The fault detection is true if

8



and only if the execution of at least one of the generated input
satisfies the configured test oracle (the bug-specific test oracles,
or the general test oracle for RQ 2). The first time to fault de-
tection is measured as the time difference between the fuzzing
starts and the first generation of a bug-revealing input. For com-
puting the average time, we count 36 core-hours (i.e., total run-
ning time) if a fuzzing runs does not generate any bug-revealing
input.

5.1.3. Threats to Validity
External threats. An external threat is that the experi-

ments involve only five fuzzing techniques, thus the results
may be different with other fuzzing techniques. Although we
could not use many general-purpose fuzzers, we employed two
most widely-used fuzzers both in research and practice. Among
many directed fuzzing techniques [31, 32], we used AFLChurn
and change-aware seed reuse technique, and their combina-
tions, as these two techniques specifically concern regression
fuzzing techniques.

Another external validity threat is that the number of the tar-
get projects and bugs are limited. While the number of bugs in
BugOss (i.e., 20) is mostly small than the ones with synthesized
or migrated bugs (see Table 1), it is comparable to the existing
benchmarks leveraging actual bug-inducing changes (i.e., 24
for FuzzBench, and 20 for UniFuzz). Furthermore, compared
to the most closely related work, AFLChurn, BugOss incor-
porates more projects and bug cases, thereby more effectively
mitigating external threats.

Also, there is a potential threat that the selection may be
biased due to the conservative procedure (see Section 3.2).
Specifically, requiring the presence of a traceability link be-
tween BIC and BFC (at Step 2) could introduce a bias in se-
lecting the target bugs. Through this conservative selection, we
believe that we can effectively mitigate another potential threat
posed by errors in BIC and BFC information.

The other external threat is that the experiments use limited
seed corpuses. Although these seed corpuses may not be com-
plete, these are still effective for reproducing the regression
fuzzing context that OSS-Fuzz had at the bug-inducing com-
mits, because these are obtained from the OSS-Fuzz configura-
tion at the corresponding commits.

Internal threats. Our in-house implementation of the
change-aware seed re-use techniques and the tooling for the ex-
periments may have errors. To limit this threats, we put our best
efforts to review all experiment scripts and the tool implemen-
tation. Also, we re-used the original configuration of OSS-Fuzz
as much as possible.

Construction threats. We conducted each fuzzing run for
36 core-hours. This timeout setup gives more time to each
fuzzing run than the original experiment of AFLChurn [3]
which gives 23 core-hours (i.e., using one core for 23 hours).
The fuzzing results may change if the fuzzers run longer. How-
ever, in our preliminary studies, we found that the conclusions
do not change if we run fuzzers for 72 core-hours. In addition,
to support that the fuzzing efforts of 6 hours with 6 cores is no
less than fuzzing efforts of 36 hours with a single core, we ad-
ditionally conducted the experiments for RQ 1 by running three

fuzzers (AFL++, libFuzzers and AFLChurn) for 36 hours using
a single core and compared the results. From this pilot study,
we found that, with 6 cores for 6 hours, the studied fuzzers
mostly show better fault detection performance, thus fuzzing
effort of using 6 cores for 6 hours would be considered no less
than fuzzing effors of using single core for 36 hours.

The fuzzing results may be unintentionally interfered by un-
controlled aspects of the machine environments. To limit this
threat, we faithfully modeled the OSS-Fuzz test environments,
and confirmed that the failures are properly reproducing based
on the OSS-Fuzz issue information.

5.2. Results

5.2.1. RQ 1. Failure Detection Effectiveness and Efficiency
Table 3 describes the fault detection performance of five

fuzzing configurations. The columns with ‘ratio’ present the
ratio of the fuzzing runs that detect the failure to total num-
ber of fuzzing conductions (i.e., 10). The ‘time’ columns show
the average ratio of first failure detection time to the time limit
(i.e., 36 core-hours). A cell marked with ’-’ signifies that the
respective experiment is not viable since none of the changed
functions was covered by the bug-free version fuzzing, thus the
seed corpus for the first buggy version fuzzing is undefined.
The best results for each bug case is marked with the bold face.

In overall, Table 3 show that BugOss exhibits various combi-
nations of fuzzing performance among the studied techniques.
There are five bug cases that no fuzzing configuration suc-
ceeded to detect any failures. For other nine bug cases, no more
than three fuzzing configurations detected a failure. There are
six bug cases where all fuzzing configurations detect a failure,
yet these show a high variety in failure detection time results.
Among the other 15 bug cases, CSR-AFL++ performed best
(i.e., with a highest fault detection ratio or a lowest fault detec-
tion time) at seven, AFL++ performed best at five, AFLChurn
at three, and CSR-libfuzzer at one.

There are many cases where the regression fuzzing tech-
niques (i.e., AFLChurn and CSR) are not effective and often
they draw negative effects. The three configurations with re-
gression fuzzing techniques (i.e., AFLChurn, CSR-libfuzzer,
CSR-AFL++) show better performance than a general-purpose
greybox fuzzer AFL++ only with six, three and nine bug cases,
respectively. The two fuzzing configurations with CSR (CSR-
libfuzzer and CSR-AFL++) performed worse than thier coun-
terparts without CSR (libfuzzer and AFL++) with three and five
bug cases, respectively.

Answer to RQ 1: BugOss provides real-world bug cases
that exhibit both advantages and the remaining chal-
lenges of regression fuzzing techniques.

5.2.2. RQ 2. Impact of Using Bug-specific Test Oracle
Table 4 compares the fuzzing results without using the bug-

specific test oracles (i.e., using the general test oracles) and the
fuzzing results with using the bug-specific test oracles. Table 4
excludes the nine bug cases whose bug-specific test oracles are

9



Table 3: Fuzzing Results with the BugOss bug cases (RQ 1)

Name libfuzzer AFL++ AFLChurn CSR-libfuzzer CSR-AFL++
ratio time ratio time ratio time ratio time ratio time

arrow-40653 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
aspell-18462 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
curl-8000 1.0 0.15 1.0 0.06 1.0 0.05 0.7 0.55 1.0 0.01
exiv2-50315 0.0 1.00 0.2 0.92 0.3 0.84 0.0 1.00 0.3 0.81
file-30222 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
gdal-47716 0.5 0.60 1.0 0.07 1.0 0.17 1.0 0.01 1.0 0.01
grok-28418 0.0 1.00 0.3 0.85 0.9 0.53 0.0 1.00 0.5 0.72
harfbuzz-55779 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.1 0.91
leptonica-25212 0.0 1.00 0.0 1.00 0.2 0.87 0.1 0.93 0.3 0.70
libarchive-44843 0.0 1.00 0.0 1.00 0.0 1.00 - - - -
libhtp-17198 0.7 0.36 1.0 0.01 0.9 0.14 1.0 0.02 1.0 0.03
ndpi-49057 0.0 1.00 0.2 0.85 0.0 1.00 0.0 1.00 0.3 0.85
openh264-26220 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
openssl-17715 0.9 0.31 0.8 0.39 1.0 0.09 1.0 0.29 1.0 0.30
pcap++-23592 0.0 1.00 0.2 0.89 0.0 1.00 0.0 1.00 0.0 1.00
poppler-35789 0.0 1.00 0.8 0.72 0.7 0.64 - - 1.0 0.07
readstat-13262 0.0 1.00 0.7 0.77 0.7 0.39 - - - -
usrsctp-18080 0.0 1.00 0.1 0.95 0.0 1.00 0.0 1.00 0.0 1.00
yara-38952 0.6 0.56 1.0 0.22 0.9 0.29 0.1 0.93 0.5 0.60
zstd-21970 1.0 0.13 1.0 0.03 1.0 0.05 0.9 0.20 1.0 0.06

Table 4: Fuzzing Results Without Using Bug-specific Test Oracles (RQ 2)

Name
libfuzzer AFL++ AFLChurn CSR-libfuzzer CSR-AFL++

ratio time ratio time ratio time ratio time ratio time
exiv2-50315 1.0 (0.0) 0.00 (1.00) 0.4 (0.2) 0.60 (0.92) 1.0 (0.3) 0.04 (0.84) 1.0 (0.0) 0.00 (1.00) 0.6 (0.3) 0.53 (0.81)
grok-28418 1.0 (0.0) 0.10 (1.00) 1.0 (0.3) 0.05 (0.85) 1.0 (0.9) 0.03 (0.53) 1.0 (0.0) 0.24 (1.00) 1.0 (0.5) 0.06 (0.72)
leptonica-25212 1.0 (0.0) 0.00 (1.00) 0.5 (0.0) 0.62 (1.00) 0.3 (0.2) 0.73 (0.87) 1.0 (0.1) 0.00 (0.93) 0.4 (0.0) 0.00 (1.00)
ndpi-49057 0.0 (0.0) 1.00 (1.00) 0.2 (0.2) 0.85 (0.85) 1.0 (0.0) 0.00 (1.00) 0.0 (0.0) 1.00 (1.00) 0.3 (0.3) 0.85 (0.85)
pcap++-23592 1.0 (0.0) 0.00 (1.00) 1.0 (0.2) 0.00 (0.89) 1.0 (0.0) 0.00 (1.00) 1.0 (0.0) 0.00 (1.00) 1.0 (0.0) 0.04 (1.00)
readstat-13262 1.0 (0.0) 0.13 (1.00) 0.8 (0.7) 0.41 (0.77) 0.9 (0.7) 0.22 (0.39) - (-) - (-) - (-) - (-)
usrsctp-18080 0.1 (0.0) 0.99 (1.00) 0.5 (0.1) 0.67 (0.95) 0.7 (0.0) 0.63 (1.00) 0.3 (0.0) 0.90 (1.00) 0.8 (0.0) 0.29 (1.00)
average 0.73 (0.00) 0.32 (1.00) 0.63 (0.24) 0.46 (0.89) 0.84 (0.30) 0.24 (0.80) 0.72 (0.02) 0.36 (0.99) 0.68 (0.18) 0.30 (0.90)

the same as the general test oracles (i.e., test oracle type is
marked as ‘all’ in Table 2) and the five bug cases where no
fuzzer detected any failures. For the other seven bug cases, Ta-
ble 4 shows the failure detection ratio and the average time of
the first failure detection measured with the general test oracles
on the “ratio” columns and the “time” columns, respectively.
The numbers in the parenthesis are the corresponding results
measured with the bug-specific test oracles (i.e., the results at
Table 3). The last row presents the average over the seven bug
case results for each column.

The failure detection results are significantly improved for
all fuzzing techniques and bug cases except four cases (i.e.,
libfuzzer, AFL++, CSR-libfuzzer, and CSR-AFL++ for ndpi-
49057). For example, libfuzzer achieves on average 73% failure
detection, while it fails to detect any failure by the bug-specific
test oracle. For example of AFLChurn, the failure detection ra-
tio is increased by 180% on average, and the first time to failure
detection is decreased by 70% on average when the general test
oracle is used.

These results imply that the use of bug-specific test oracles
significantly influences the fuzzing performance if a target pro-

gram has multiple bugs. If other bugs may exist with a target
bug, the bug-specific test oracle must be carefully constructed
and applied for conducting fuzzing experiments. Otherwise,
the experiment results may be easily invalid since the failure
detection results are likely dominated by another bug for which
fuzzers quickly generate failing inputs.

Answer to RQ 2: The failure detection results change
significantly depending on the use of the bug-specific
test oracles when the target programs contain one or
more co-existing bugs.

5.2.3. RQ 3. Impact of Using Bug-Fixing Change Information
Table 5 compared the results of the regression fuzzing tech-

niques with the changed functions defined by the bug-inducing
commit (the “with BIC” columns) and the results by the bug-
fixing commit (the “with BFC” columns). A cell marked with
’-’ signifies, as Table 3 does, that the respective experiment is
not viable since none of the changed functions was covered by
the bug-free version fuzzing. The best results for each bug case

10



Table 5: Fuzzing Results With Bug-Inducing Commit Information and With Bug-Fixing Commit Information (RQ 3)

Name
changed functions AFLChurn CSR-libfuzzer CSR-AFL++

BIC BFC BIC∩ with BIC with BFC with BIC with BFC with BIC with BFC
BFC ratio time ratio time ratio time ratio time ratio time ratio time

arrow-40653 2 5 0 0.0 1.00 0.0 1.00 0.0 1.00 - - 0.0 1.00 - -
aspell-18462 1 6 0 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
curl-8000 2 1 1 1.0 0.05 1.0 0.04 0.7 0.55 - - 1.0 0.01 - -
exiv2-50315 3 1 1 0.3 0.84 0.4 0.80 0.0 1.00 0.0 1.00 0.3 0.81 0.9 0.36
file-30222 2 1 0 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
gdal-47716 1 2 1 1.0 0.17 1.0 0.23 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.02
grok-28418 10 10 4 0.9 0.53 0.9 0.53 0.0 1.00 0.0 1.00 0.5 0.72 1.0 0.27
harfbuzz-55779 3 2 2 0.0 1.00 0.0 1.00 0.0 1.00 - - 0.1 0.91 - -
leptonica-25212 1 3 1 0.2 0.87 0.1 0.97 0.1 0.93 0.7 0.48 0.3 0.70 0.3 0.70
libarchive-44843 3 1 1 0.0 1.00 0.0 1.00 - - - - - - - -
libhtp-17198 2 5 2 0.9 0.14 1.0 0.03 1.0 0.02 1.0 0.08 1.0 0.03 1.0 0.04
ndpi-49057 2 4 1 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.3 0.85 0.1 0.97
openh264-26220 1 1 1 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
openssl-17715 2 2 2 1.0 0.09 1.0 0.01 1.0 0.29 1.0 0.29 1.0 0.30 1.0 0.30
pcap++-23592 6 2 1 0.0 1.00 0.0 1.00 0.0 1.00 - - 0.0 1.00 - -
poppler-35789 2 2 1 0.7 0.64 0.4 0.90 - - - - 1.0 0.07 1.0 0.00
readstat-13262 1 2 0 0.7 0.39 0.0 1.00 - - 0.0 1.00 - - 0.0 1.00
usrsctp-18080 1 1 0 0.0 1.00 0.3 0.82 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
yara-38952 1 - 0 0.9 0.29 1.0 0.21 0.1 0.93 - - 0.5 0.60 - -
zstd-21970 5 12 0 1.0 0.05 1.0 0.06 0.9 0.20 1.0 0.03 1.0 0.06 1.0 0.03

is marked with the bold face. In addition, Table 5 describes
the number of the functions changed by the bug-inducing com-
mit (the “BIC” column), the number of the functions changed
by the bug-fixing commit (the “BFC” column), and their inter-
sections (the “BIC∩BFC” column). For yara-38952, the func-
tions changed by the BFC is marked as undefined (’-’) because
the code change is on the macro code which impacts on many
functions over the projects. Among the 20 bug cases, two share
identical changed functions for BIC and BFC, while seven have
no overlap between the changed functions for BIC and BFC.

The result shows that, for six bug cases, all fuzzing configu-
ration studied for RQ 3 failed in generating a bug-revealing in-
put (arrow-40653, aspell-18462, file-30222, libarchive-44843,
openh-26220 and pcap++-23592). With all the other 14 bug
cases, the results show that, in at least one studied fuzzing
configuration, the fuzzing performance changes depending on
the given changed function information with 14 bug cases.
When the BFC information is used, AFLChurn exhibits better
fuzzing results (i.e., fault detection ratio increases or the time
to first fault detection decreases by at least 5%p) with six bug
cases (openssl-17715, exiv2-50315, gdal-47716, libhtp-17198,
usrsctp-18080 and yara-38952), while it performs worse (i.e.,
fault detection ratio is reduced or the time to first fault detec-
tion increases by at least 5%p) with three bug cases (leptonica-
25212, poppler-35789 and readstat-13262).

CSR-libfuzzer or CSR-AFL++ performs better with five
bug cases when the changed functions are defined with the
BFC information (exiv2-50315, leptonica-25212, grok-28418,
poppler-35789 and zstd-21970). On the other hands, the CSR
technique was not applicable to seven bug cases since none
of the target functions were covered in the bug-free versing

fuzzing phases. In addition, CSR-AFL++ exhibits worse per-
formance with two bug cases (gdal-47716 and ndpi-49057).

One finding is that the BugOss bug cases demonstrates that,
depending on whether the changed code is defined by BIC or
BFC, the performance of the studied regression fuzzing tech-
niques varies. This finding implies that the artificial bug cases
with bug-fixing information may lead to inaccuracies in evalu-
ating regression fuzzing techniques.

Another finding is that five bug cases in BugOss reveals
counter-intuitive results, indicating that the performance of a re-
gression fuzzing technique is rather reduced when the changed
code information accurately points bug locations (leptonica-
25212, poppler-35789 and readstat-13262 for AFLChurn; curl-
8000, libhtp-17198 and yara-38952 for CSR). We anticipate
that these bug cases indicate the limitations of the studied re-
gression fuzzing techniques in directing fuzzing towards the
target code locations.

Answer to RQ 3: BugOss exhibits that the bug-inducing
commits and the bug-fixing commits often indicates
changed code locations differently, and the performance
of the regression fuzzing techniques largely depend on
given changed code information.

5.2.4. RQ 4. Impact of Using Last Buggy Version
In addition to RQ 3, RQ 4 explores how the studied fuzzing

techniques perform differently when they test the last buggy
version (i.e., the immediately preceding version of the bug-
fixing commit) instead of the first buggy version. Table 6 com-
pares the results with the last buggy version and the first buggy

11



Table 6: Fuzzing Results on Last Buggy Versions with Bug-Fixing Commit Information (RQ 4)

Name
AFLChurn CSR-libfuzzer CSR-AFL++

first buggy version last buggy version first buggy version last buggy version first buggy version last buggy version
ratio time ratio time ratio time ratio time ratio time ratio time

arrow-40653 0.0 1.00 0.0 1.00 0.0 1.00 - - 0.0 1.00 - -
aspell-18462 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
curl-8000 1.0 0.05 1.0 0.04 0.7 0.55 - - 1.0 0.01 - -
exiv2-50315 0.3 0.84 0.4 0.80 0.0 1.00 0.0 1.00 0.3 0.81 0.6 0.76
file-30222 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
gdal-47716 1.0 0.17 1.0 0.23 1.0 0.01 1.0 0.01 1.0 0.01 1.0 0.08
grok-28418 0.9 0.53 0.9 0.53 0.0 1.00 0.0 1.00 0.5 0.72 0.0 1.00
harfbuzz-55779 0.0 1.00 0.0 1.00 0.0 1.00 - - 0.1 0.91 - -
leptonica-25212 0.2 0.87 0.1 0.97 0.1 0.93 0.6 0.58 0.3 0.70 0.3 0.70
libarchive-44843 0.0 1.00 0.0 1.00 - - - - - - - -
libhtp-17198 0.9 0.14 1.0 0.03 1.0 0.02 1.0 0.04 1.0 0.03 0.9 0.34
ndpi-49057 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.3 0.85 0.4 0.71
openh264-26220 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
openssl-17715 1.0 0.09 1.0 0.01 1.0 0.29 1.0 0.12 1.0 0.30 0.9 0.44
pcap++-23592 0.0 1.00 0.0 1.00 0.0 1.00 - - 0.0 1.00 - -
poppler-35789 0.7 0.64 0.4 0.90 - - - - 1.0 0.07 1.0 0.01
readstat-13262 0.7 0.39 0.0 1.00 - - 0.0 1.00 - - 0.0 1.00
usrsctp-18080 0.0 1.00 0.3 0.82 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
yara-38952 0.9 0.29 1.0 0.21 0.1 0.93 - - 0.5 0.60 - -
zstd-21970 1.0 0.05 1.0 0.06 0.9 0.20 1.0 0.03 1.0 0.06 1.0 0.04

version for each studied fuzzing configuration. Note that the re-
sults with the first buggy versions are also presented in Table 3.
A cell marked with ’-’ in this table indicates that the respective
experiment is not viable since none of the changed functions
was covered by the bug-free version fuzzing. The best results
for each bug case is marked with the bold face.

Overall, with all 14 bug cases where one of the regression
fuzzing techniques succeeded in generating a bug-revealing in-
put, at least one of the studied fuzzing configurations exhibits
varying performances (i.e., fault detection ratio is different or
the difference in the time to first fault detection exceeds 5%p).
For AFLChurn, the fuzzing performance are changed in eleven
bug cases. For example of poppler-35789, the difference in
the fault detection ratio is 0.3. For CSR-libfuzzer and CSR-
AFL++, the performance change is observed with 12 bug cases.
The most significant change is CSR-AFL++ with grok-28418
where the difference in fault detection ratio is 0.5.

Similar to the findings in RQ 3, the results for RQ 4 also
show that the performance of the studied regression fuzzing
techniques varies depending on whether fuzzing is applied to
actual bug-inducing commits (i.e., first buggy version) or the
bug-fixing commits (i.e., last buggy version) are utilized.

Answer to RQ 4: BugOss demonstrates that the per-
formance of the regression fuzzing techniques change
depending on whether fuzzing is applied to actual bug-
inducing commits or the bug-fixing commits are uti-
lized.

6. Discussion

6.1. Usefulness of BugOss Bug Cases
The results (Section 5) illustrate that the bug cases of Bu-

gOss uncovers the limitation of the studied fuzzing techniques.
Specifically, all studied fuzzing configurations were unsuccess-
ful in generating any bug-revealing inputs for five bug cases.
For other five bug cases, a general-purpose fuzzer AFL++ out-
performs regression fuzzing techniques, indicating that regres-
sion fuzzing techniques often have adverse effects on fuzzing
performance. We envision that BugOss can serve as a com-
prehensive benchmark for identifying the research problems to
facilitate improvements in regression fuzzing techniques and
guide future research efforts in addressing the identified chal-
lenges.

To understand the current challenges, we further analyzed
the cases of the five bugs (arrow-40653, aspell-18462, file-
30222, openh264-26220 and libarchive-44843) for which all
studied fuzzers failed to generate bug-revealing inputs. First,
we checked whether the buggy code is executed. We found that,
for one bug case (libarchive-44843), all fuzzers failed to execute
any bug location within the given fuzzing time. Subsequently,
we determined the infection condition by comparing the buggy
code and the bug-fixing commit and inspecting the failing ex-
ecution with the bug-revealing inputs, and checked whether
the infection occurs when the bug locations are executed. As
result, we concluded that, for two bug cases (file-30222 and
openh264-26220), all fuzzing techniques could not induce in-
fections. Meanwhile, for the other two bug cases (arrow-40653
and aspell-18462), we found that the infection conditions are
once satisfied by generated inputs, yet the propagations never
happened.

Through these analyses, we found that BugOss encompasses
interesting bug cases to examine the fault detection ability of a

12



fuzzing techniques. In addition, we confirmed that the bug case
artifacts offer useful data for detailed analysis of the bug cases.

6.2. Usefulness of Inferred Test Oracles
It is common that a bug-inducing commit adds a new bug to

the target program where one or more other bugs already exist.
Even when OSS-Fuzz identifies failures and reports concrete
bug-revealing inputs, it frequently requires a decent amount
of time for maintainers to fix the bugs. As a result, contin-
uous fuzzing is often carried out in the presence of multiple
bugs. BugOss represents such situations as 11 out of the 20 bug
cases are sourced from the bug-inducing commits with other
co-existing bugs (see Table 2).

The study of RQ 2 (see Section 5.2.2) suggests that the eval-
uation of regression fuzzing techniques may imply invalid re-
sults if the effect of other co-existing bugs are not carefully ac-
counted. To limit this threat in a cost-effective way, each bug
case of BugOss provides the bug-specific test oracles together
with the test oracles of the other failures (find more details at
Section 3.3). The experiment results of RQ 2 demonstrates that
the performance of a fuzzing technique varies significantly de-
pending on whether or not these test oracles are used for deter-
mining if a failure reveals the target bug.

Since these are extracted from only limited failures cases,
the test oracles in BugOss may fail to classify a failure cor-
rectly if the failure exhibits unidentified symptoms. To assess
whether this limitation matters in our experiments, we studied
all cases of unidentified failures (i.e., a failure accepted by none
of the test oracles of the bug case). We found that total 5 occur-
rences of unidentified failures in whole experiments presented
in Section 5. By running the last buggy version and the fixed
buggy version with these failure-inducing inputs against, we
confirmed that these unidentified failures are not caused by the
target bugs. Furthermore, we found that, four out of the five
unidentified failures are reproducible at the latest versions of
the target projects at the moment of the experiments. Based on
these results, we believe that the process outlined in Section 3
yields effective test oracles capable of identifying the failures
by a specific bug of interest at fuzzing in the presence of co-
existing bugs.

In addition, from the experiment results, we checked if all
first failures found the fuzzers and accepted by the bug-specific
test oracle are the actual bug-revealing inputs by running them
against the different versions. As a result, we found that all
of them are true positives (i.e., pass on the bug-free and fixed
versions, fail on the first and last buggy versions). For these
reasons, while the inferred test oracles may not be perfectly ac-
curate, we believe that our approach is practically meaningful.

6.3. Challenges in Benchmark Construction
To obtain the 20 bug cases of BugOss, we had reviewed to-

tal 2074 OSS-Fuzz issues from 65 open-source projects. We
rejected 2054 issues in the middle of the construction process
(Section 3.2), mostly because we could not find clear evidence
for supporting bug-fixing commits (Step 2). We intended Bu-
gOss to provide a full package of details for experimenting re-
gression fuzzing techniques and studying their shortcomings by

Table 7: Fuzzing Results of AFLChurn with Change-aware Seed Reuse

Name AFLChurn CSR-AFLChurn
ratio time ratio time

arrow-40653 0.0 1.00 0.0 1.00
aspell-18462 0.0 1.00 0.0 1.00
curl-8000 1.0 0.05 1.0 0.00
exiv2-50315 0.3 0.84 0.2 0.87
file-30222 0.0 1.00 0.0 1.00
gdal-47716 1.0 0.17 1.0 0.01
grok-28418 0.9 0.53 0.8 0.52
harfbuzz-55779 0.0 1.00 0.1 0.94
leptonica-25212 0.2 0.87 0.3 0.70
libarchive-44843 0.0 1.00 - -
libhtp-17198 0.9 0.14 1.0 0.04
ndpi-49057 0.0 1.00 0.1 0.93
openh264-26220 0.0 1.00 0.0 1.00
openssl-17715 1.0 0.09 1.0 0.01
pcap++-23592 0.0 1.00 0.0 1.00
poppler-35789 0.7 0.64 1.0 0.07
readstat-13262 0.7 0.39 - -
usrsctp-18080 0.0 1.00 0.0 1.00
yara-38952 0.9 0.29 0.7 0.48
zstd-21970 1.0 0.05 1.0 0.08

quantitative analyses on the bug cases. For this reason, we ex-
clude a bug case if it is unclear which commit is intended to fix
the bug under consideration. Although it seems quite conserva-
tive, we expect that this criteria prevents possible errors in BIC
and BFC information (see Section 5.1.3).

Although OSS-Fuzz publicly open a large number of the bug
reports that reveal real-world bugs in open-source projects, due
to the lack of the traceability [33] between the OSS-Fuzz is-
sues and the target project commit history, we found that only
a small portion of these can be contributed to construct BugOss
bug cases. It would be beneficial if there is an automatic way to
accurately associate the OSS-Fuzz issues with the correspond-
ing bug-inducing commits and bug-fixing commits based on the
evidences in project context such as commit messages.

6.4. Using AFLChurn and Change-aware Seed Reuse Together

We constructed another fuzzing configuration that leverages
both regression fuzzing techniques (AFLChurn and change-
aware seed reuse) at the same time to explore a possible way to
improve regression fuzzing. Table 7 shows the results of CSR-
AFLChurn where AFLChurn runs on the first buggy versions
where the initial seeds were generated on the bug-free versions
and selected based on the code changes at the bug-inducing
commits. The results of CSR-AFLChurn are compared with
the results of AFLChurn for studying RQ 1 (Table 3).

The combined use of the two techniques improves the fault
detection results with eight bug cases compared to AFLChurn.
Meanwhile, CSR-AFLChurn exhibits slightly reduced perfor-
mances with five bug cases. When AFL++ and CSR-AFL++
are taken into account, CSR-AFLChurn outperformed only
with openssl-17715. With the seven bug cases where no fuzzing

13



configurations were effective, CSR-AFLChurn is also unsuc-
cessful in generating a bug-revealing input. These findings sug-
gest that further investigations are required to explore effective
methods for integrating different regression fuzzing techniques
to improve fault detection performance.

7. Conclusion

This paper presents a regression bug benchmark BugOss for
evaluating regression fuzzing techniques for C/C++ programs
with realistic continuous fuzzing situations. To mitigate pos-
sible threats in empirical evaluation, BugOss pinpoints bug-
inducing commits of target bugs, and provide specific test or-
acles to discriminate the failures by the target bugs from fail-
ures by other co-existing bugs. We detailed the systematic
procedures for constructing bug cases based on OSS-Fuzz is-
sues. The empirical investigation with BugOss discloses that
the project context information affects the regression fuzzing
performance, and the 20 bug cases currently registered for Bu-
gOss covers various cases of regression bugs in real-world. The
BugOss benchmark would be useful for researchers to evalu-
ate regression fuzzing techniques and understand the remaining
challenges.

Acknowledgement

We thank Hanyoung Yoo, Suhyun Park, Sungbin Lim, and
Kieun Kim for their efforts in reviewing the experiment re-
sults. This work was supported by the National Research Foun-
dation of Korea grants, No. 2020R1C1C1013512 and No.
2021R1A5A1021944, funded by the Korea government. This
work was partly supported by Sabbatical Leave Grant at Han-
dong Global University when the authors were affiliated with
Handong Global University.

References

[1] K. Serebryany, Continuous fuzzing with libFuzzer and AddressSani-
tizer, in: IEEE Cybersecurity Development, 2016, pp. 157–157. doi:

10.1109/SecDev.2016.043.
[2] K. Serebryany, OSS-Fuzz - Google’s continuous fuzzing service for open

source software, in: USENIX Security, USENIX Association, Vancouver,
BC, 2017.

[3] X. Zhu, M. Böhme, Regression greybox fuzzing, in: ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2021.

[4] H. Yoo, J. Hong, L. Bader, D. W. Hwang, S. Hong, Improving config-
urability of unit-level continuous fuzzing: An industrial case study with
SAP HANA, in: 2021 36th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), 2021.

[5] T. Klooster, F. Turkmen, G. Broenink, R. t. Hove, M. Böhme, Effec-
tiveness and scalability of fuzzing techniques in CI/CD pipelines (2022).
doi:10.48550/ARXIV.2205.14964.
URL https://arxiv.org/abs/2205.14964

[6] A. Hazimeh, A. Herrera, M. Payer, Magma: A ground-truth fuzzing
benchmark, Proceedings of the ACM on Measurement and Analysis of
Computing Systems (POMACS) 4 (3) (jun 2021).

[7] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robert-
son, F. Ulrich, R. Whelan, LAVA: Large-scale automated vulnerability
addition, in: 2016 IEEE Symposium on Security and Privacy (SP), 2016,
pp. 110–121. doi:10.1109/SP.2016.15.

[8] Z. Zhang, Z. Patterson, M. Hicks, S. Wei, FIXREVERTER: A realis-
tic bug injection methodology for benchmarking fuzz testing, in: 31st
USENIX Security Symposium (USENIX Security 22), 2022.

[9] J. Bundt, A. Fasano, B. Dolan-Gavitt, W. Robertson, T. Leek, Evaluat-
ing synthetic bugs, in: Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security, ASIA CCS ’21, 2021, p.
716–730.

[10] G. Klees, A. Ruef, B. Cooper, S. Wei, M. Hicks, Evaluating fuzz test-
ing, in: Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’18, Association for Com-
puting Machinery, New York, NY, USA, 2018, p. 2123–2138. doi:

10.1145/3243734.3243804.
URL https://doi.org/10.1145/3243734.3243804

[11] T. Klooster, F. Turkmen, G. Broenink, R. T. Hove, M. Böhme, Continuous
fuzzing: A study of the effectiveness and scalability of fuzzing in ci/cd
pipelines, in: 2023 IEEE/ACM International Workshop on Search-Based
and Fuzz Testing (SBFT), 2023, pp. 25–32. doi:10.1109/SBFT59156.
2023.00015.

[12] B. N. Keller, B. S. Meyers, A. Meneely, What happens when we fuzz?
investigating oss-fuzz bug history, in: 2023 IEEE/ACM 20th International
Conference on Mining Software Repositories (MSR), 2023, pp. 207–217.
doi:10.1109/MSR59073.2023.00038.

[13] J. Bundt, A. Fasano, B. Dolan-Gavitt, W. Robertson, T. Leek, Evaluating
synthetic bugs, in: Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security, ASIA CCS ’21, Association for
Computing Machinery, New York, NY, USA, 2021, p. 716–730. doi:

10.1145/3433210.3453096.
URL https://doi.org/10.1145/3433210.3453096

[14] FuzzBench at commit b6d7a9c (2024-03-07).
URL https://github.com/google/fuzzbench

[15] UniFuzz at commit 834f297 (2021-03-17).
URL https://github.com/unifuzz/unibench

[16] Magma at commit 75d1ae7 (2022-12-08).
URL https://github.com/HexHive/magma

[17] J. Metzman, L. Szekeres, L. M. R. Simon, R. T. Sprabery, A. Arya,
FuzzBench: An open fuzzer benchmarking platform and service, in: Pro-
ceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software En-
gineering, New York, NY, USA, 2021.

[18] H. Lee, S. Kim, S. K. Cha, Fuzzle: Making a puzzle for fuzzers, in: Pro-
ceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’22, Association for Computing Machinery,
New York, NY, USA, 2023. doi:10.1145/3551349.3556908.
URL https://doi.org/10.1145/3551349.3556908

[19] Darpa cyber grand challenge.
URL https://github.com/CyberGrandChallenge

[20] A. Fasano, T. Leek, B. Dolan-Gavitt, J. Bundt, The Rode0day to less-
buggy programs, IEEE Security & Privacy 17 (6) (2019) 84–88. doi:

10.1109/MSEC.2019.2933682.
[21] Google fuzzer-test-suite (fts) benchmark.

URL https://github.com/google/fuzzer-test-suite

[22] Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen, C. Lyu, C. Wu,
R. Beyah, P. Cheng, K. Lu, T. Wang, UNIFUZZ: A holistic and prag-
matic Metrics-Driven platform for evaluating fuzzers, in: 30th USENIX
Security Symposium (USENIX Security 21), 2021.

[23] M. Böhme, L. Szekeres, J. Metzman, On the reliability of coverage-based
fuzzer benchmarking, ICSE ’22, 2022, p. 1621–1633.

[24] G. An, J. Yoon, S. Yoo, Searching for multi-fault programs in defects4j,
in: U.-M. O’Reilly, X. Devroey (Eds.), Search-Based Software Engineer-
ing, Springer International Publishing, Cham, 2021, pp. 153–158.

[25] J. Siliwerski, T. Zimmermann, A. Zeller, When do changes induce fixes?,
in: Proceedings of the 2005 International Workshop on Mining Software
Repositories, MSR ’05, 2005.

[26] G. An, J. Hong, N. Kim, S. Yoo, Fonte: Finding bug inducing commits
from failures, in: Proceedings of the 45th International Conference on
Software Engineering, ICSE ’23, IEEE Press, 2023, p. 589–601. doi:

10.1109/ICSE48619.2023.00059.
URL https://doi.org/10.1109/ICSE48619.2023.00059

[27] M. Wen, R. Wu, S.-C. Cheung, Locus: Locating bugs from software
changes, in: Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE ’16, Association for

14

https://doi.org/10.1109/SecDev.2016.043
https://doi.org/10.1109/SecDev.2016.043
https://arxiv.org/abs/2205.14964
https://arxiv.org/abs/2205.14964
https://doi.org/10.48550/ARXIV.2205.14964
https://arxiv.org/abs/2205.14964
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/SBFT59156.2023.00015
https://doi.org/10.1109/SBFT59156.2023.00015
https://doi.org/10.1109/MSR59073.2023.00038
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://github.com/google/fuzzbench
https://github.com/google/fuzzbench
https://github.com/unifuzz/unibench
https://github.com/unifuzz/unibench
https://github.com/HexHive/magma
https://github.com/HexHive/magma
https://doi.org/10.1145/3551349.3556908
https://doi.org/10.1145/3551349.3556908
https://doi.org/10.1145/3551349.3556908
https://github.com/CyberGrandChallenge
https://github.com/CyberGrandChallenge
https://doi.org/10.1109/MSEC.2019.2933682
https://doi.org/10.1109/MSEC.2019.2933682
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://doi.org/10.1109/ICSE48619.2023.00059
https://doi.org/10.1109/ICSE48619.2023.00059
https://doi.org/10.1109/ICSE48619.2023.00059
https://doi.org/10.1109/ICSE48619.2023.00059
https://doi.org/10.1109/ICSE48619.2023.00059
https://doi.org/10.1145/2970276.2970359
https://doi.org/10.1145/2970276.2970359


Computing Machinery, New York, NY, USA, 2016, p. 262–273. doi:

10.1145/2970276.2970359.
URL https://doi.org/10.1145/2970276.2970359

[28] G. An, J. Yoon, S. Yoo, Searching for multi-fault programs in defects4j,
in: Proceedings of the 13th International Symposium on Search Based
Software Engineering, 2021, pp. 136–150.

[29] Z. Y. Ding, C. Le Goues, An empirical study of OSS-Fuzz bugs, in: 2021
IEEE/ACM 18th International Conference on Mining Software Reposito-
ries (MSR), 2021, pp. 131–142.

[30] A. Fioraldi, D. Maier, H. Eißfeldt, M. Heuse, AFL++ : Combining in-
cremental steps of fuzzing research, in: USENIX Workshop on Offensive
Technologies (WOOT 20), 2020.

[31] M. Böhme, V.-T. Pham, M.-D. Nguyen, A. Roychoudhury, Directed grey-
box fuzzing, CCS ’17, Association for Computing Machinery, New York,
NY, USA, 2017, p. 2329–2344. doi:10.1145/3133956.3134020.
URL https://doi.org/10.1145/3133956.3134020

[32] C. Lemieux, R. Padhye, K. Sen, D. Song, PerfFuzz: Automatically gen-
erating pathological inputs, in: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2018,
2018, p. 254–265.

[33] H. Kagdi, J. I. Maletic, B. Sharif, Mining software repositories for trace-
ability links, in: 15th IEEE International Conference on Program Com-
prehension (ICPC ’07), 2007, pp. 145–154. doi:10.1109/ICPC.2007.
28.

15

https://doi.org/10.1145/2970276.2970359
https://doi.org/10.1145/2970276.2970359
https://doi.org/10.1145/2970276.2970359
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/ICPC.2007.28
https://doi.org/10.1109/ICPC.2007.28

	Introduction
	Background and Related Work
	Continuous Fuzzing and Regrssion Fuzzing Techniques
	OSS-Fuzz Service
	Fuzzing Benchmark

	Benchmark Design and Construction
	Artifact structure
	Construction process
	Test Oracle Construction

	BugOss Benchmark
	Empirical Investigation
	Experiment Design
	Research questions
	Experiment Setup and Measurements
	Threats to Validity

	Results
	RQ 1. Failure Detection Effectiveness and Efficiency
	RQ 2. Impact of Using Bug-specific Test Oracle
	RQ 3. Impact of Using Bug-Fixing Change Information
	RQ 4. Impact of Using Last Buggy Version


	Discussion
	Usefulness of BugOss Bug Cases
	Usefulness of Inferred Test Oracles
	Challenges in Benchmark Construction
	Using AFLChurn and Change-aware Seed Reuse Together

	Conclusion

